3.67 \(\int x \sqrt{d-c^2 d x^2} (a+b \cosh ^{-1}(c x)) \, dx\)

Optimal. Leaf size=118 \[ -\frac{\left (d-c^2 d x^2\right )^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{3 c^2 d}-\frac{b c x^3 \sqrt{d-c^2 d x^2}}{9 \sqrt{c x-1} \sqrt{c x+1}}+\frac{b x \sqrt{d-c^2 d x^2}}{3 c \sqrt{c x-1} \sqrt{c x+1}} \]

[Out]

(b*x*Sqrt[d - c^2*d*x^2])/(3*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (b*c*x^3*Sqrt[d - c^2*d*x^2])/(9*Sqrt[-1 + c*x]
*Sqrt[1 + c*x]) - ((d - c^2*d*x^2)^(3/2)*(a + b*ArcCosh[c*x]))/(3*c^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.211942, antiderivative size = 126, normalized size of antiderivative = 1.07, number of steps used = 3, number of rules used = 2, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.08, Rules used = {5798, 5718} \[ -\frac{(1-c x) (c x+1) \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{3 c^2}-\frac{b c x^3 \sqrt{d-c^2 d x^2}}{9 \sqrt{c x-1} \sqrt{c x+1}}+\frac{b x \sqrt{d-c^2 d x^2}}{3 c \sqrt{c x-1} \sqrt{c x+1}} \]

Antiderivative was successfully verified.

[In]

Int[x*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]),x]

[Out]

(b*x*Sqrt[d - c^2*d*x^2])/(3*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (b*c*x^3*Sqrt[d - c^2*d*x^2])/(9*Sqrt[-1 + c*x]
*Sqrt[1 + c*x]) - ((1 - c*x)*(1 + c*x)*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/(3*c^2)

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rule 5718

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_
Symbol] :> Simp[((d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n)/(2*e1*e2*(p + 1)), x] - Dist[
(b*n*(-(d1*d2))^IntPart[p]*(d1 + e1*x)^FracPart[p]*(d2 + e2*x)^FracPart[p])/(2*c*(p + 1)*(1 + c*x)^FracPart[p]
*(-1 + c*x)^FracPart[p]), Int[(-1 + c^2*x^2)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c,
 d1, e1, d2, e2, p}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && NeQ[p, -1] && IntegerQ[p + 1
/2]

Rubi steps

\begin{align*} \int x \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right ) \, dx &=\frac{\sqrt{d-c^2 d x^2} \int x \sqrt{-1+c x} \sqrt{1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \, dx}{\sqrt{-1+c x} \sqrt{1+c x}}\\ &=-\frac{(1-c x) (1+c x) \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{3 c^2}-\frac{\left (b \sqrt{d-c^2 d x^2}\right ) \int \left (-1+c^2 x^2\right ) \, dx}{3 c \sqrt{-1+c x} \sqrt{1+c x}}\\ &=\frac{b x \sqrt{d-c^2 d x^2}}{3 c \sqrt{-1+c x} \sqrt{1+c x}}-\frac{b c x^3 \sqrt{d-c^2 d x^2}}{9 \sqrt{-1+c x} \sqrt{1+c x}}-\frac{(1-c x) (1+c x) \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{3 c^2}\\ \end{align*}

Mathematica [A]  time = 0.128441, size = 98, normalized size = 0.83 \[ \frac{\sqrt{d-c^2 d x^2} \left (3 a \left (c^2 x^2-1\right )^2+b c x \sqrt{c x-1} \sqrt{c x+1} \left (3-c^2 x^2\right )+3 b \left (c^2 x^2-1\right )^2 \cosh ^{-1}(c x)\right )}{9 c^2 \left (c^2 x^2-1\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[x*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]),x]

[Out]

(Sqrt[d - c^2*d*x^2]*(b*c*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(3 - c^2*x^2) + 3*a*(-1 + c^2*x^2)^2 + 3*b*(-1 + c^2*
x^2)^2*ArcCosh[c*x]))/(9*c^2*(-1 + c^2*x^2))

________________________________________________________________________________________

Maple [B]  time = 0.244, size = 356, normalized size = 3. \begin{align*} -{\frac{a}{3\,{c}^{2}d} \left ( -{c}^{2}d{x}^{2}+d \right ) ^{{\frac{3}{2}}}}+b \left ({\frac{-1+3\,{\rm arccosh} \left (cx\right )}{ \left ( 72\,cx+72 \right ){c}^{2} \left ( cx-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) } \left ( 4\,{c}^{4}{x}^{4}-5\,{c}^{2}{x}^{2}+4\,\sqrt{cx+1}\sqrt{cx-1}{x}^{3}{c}^{3}-3\,\sqrt{cx+1}\sqrt{cx-1}xc+1 \right ) }-{\frac{-1+{\rm arccosh} \left (cx\right )}{ \left ( 8\,cx+8 \right ){c}^{2} \left ( cx-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) } \left ( \sqrt{cx+1}\sqrt{cx-1}xc+{c}^{2}{x}^{2}-1 \right ) }-{\frac{1+{\rm arccosh} \left (cx\right )}{ \left ( 8\,cx+8 \right ){c}^{2} \left ( cx-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) } \left ( -\sqrt{cx+1}\sqrt{cx-1}xc+{c}^{2}{x}^{2}-1 \right ) }+{\frac{1+3\,{\rm arccosh} \left (cx\right )}{ \left ( 72\,cx+72 \right ){c}^{2} \left ( cx-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) } \left ( -4\,\sqrt{cx+1}\sqrt{cx-1}{x}^{3}{c}^{3}+4\,{c}^{4}{x}^{4}+3\,\sqrt{cx+1}\sqrt{cx-1}xc-5\,{c}^{2}{x}^{2}+1 \right ) } \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2),x)

[Out]

-1/3*a/c^2/d*(-c^2*d*x^2+d)^(3/2)+b*(1/72*(-d*(c^2*x^2-1))^(1/2)*(4*c^4*x^4-5*c^2*x^2+4*(c*x+1)^(1/2)*(c*x-1)^
(1/2)*x^3*c^3-3*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+1)*(-1+3*arccosh(c*x))/(c*x+1)/c^2/(c*x-1)-1/8*(-d*(c^2*x^2-1)
)^(1/2)*((c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*(-1+arccosh(c*x))/(c*x+1)/c^2/(c*x-1)-1/8*(-d*(c^2*x^2-1))
^(1/2)*(-(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*(1+arccosh(c*x))/(c*x+1)/c^2/(c*x-1)+1/72*(-d*(c^2*x^2-1))
^(1/2)*(-4*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x^3*c^3+4*c^4*x^4+3*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c-5*c^2*x^2+1)*(1+3*a
rccosh(c*x))/(c*x+1)/c^2/(c*x-1))

________________________________________________________________________________________

Maxima [A]  time = 1.13872, size = 109, normalized size = 0.92 \begin{align*} -\frac{{\left (-c^{2} d x^{2} + d\right )}^{\frac{3}{2}} b \operatorname{arcosh}\left (c x\right )}{3 \, c^{2} d} - \frac{{\left (c^{2} \sqrt{-d} d x^{3} - 3 \, \sqrt{-d} d x\right )} b}{9 \, c d} - \frac{{\left (-c^{2} d x^{2} + d\right )}^{\frac{3}{2}} a}{3 \, c^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-1/3*(-c^2*d*x^2 + d)^(3/2)*b*arccosh(c*x)/(c^2*d) - 1/9*(c^2*sqrt(-d)*d*x^3 - 3*sqrt(-d)*d*x)*b/(c*d) - 1/3*(
-c^2*d*x^2 + d)^(3/2)*a/(c^2*d)

________________________________________________________________________________________

Fricas [A]  time = 1.77673, size = 301, normalized size = 2.55 \begin{align*} \frac{3 \,{\left (b c^{4} x^{4} - 2 \, b c^{2} x^{2} + b\right )} \sqrt{-c^{2} d x^{2} + d} \log \left (c x + \sqrt{c^{2} x^{2} - 1}\right ) -{\left (b c^{3} x^{3} - 3 \, b c x\right )} \sqrt{-c^{2} d x^{2} + d} \sqrt{c^{2} x^{2} - 1} + 3 \,{\left (a c^{4} x^{4} - 2 \, a c^{2} x^{2} + a\right )} \sqrt{-c^{2} d x^{2} + d}}{9 \,{\left (c^{4} x^{2} - c^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

1/9*(3*(b*c^4*x^4 - 2*b*c^2*x^2 + b)*sqrt(-c^2*d*x^2 + d)*log(c*x + sqrt(c^2*x^2 - 1)) - (b*c^3*x^3 - 3*b*c*x)
*sqrt(-c^2*d*x^2 + d)*sqrt(c^2*x^2 - 1) + 3*(a*c^4*x^4 - 2*a*c^2*x^2 + a)*sqrt(-c^2*d*x^2 + d))/(c^4*x^2 - c^2
)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \sqrt{- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname{acosh}{\left (c x \right )}\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*acosh(c*x))*(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x*sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*acosh(c*x)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError